Type 1 Cover Image.

A General Approach to Define Binders Using Matching Logic

by Xiaohong Chen and Grigore Rosu

Summary

We propose a novel definition of binders using matching logic, where the binding behavior of object-level binders is directly inherited from the built-in exists binder of matching logic. We show that the behavior of binders in various logical systems such as lambda-calculus, System F, pi-calculus, pure type systems, can be axiomatically defined in matching logic as notations and logical theories. We show the correctness of our definitions by proving conservative extension theorems, which state that a sequent/judgment is provable in the original system if and only if it is provable in matching logic, in the corresponding theory. Our matching logic definition of binders also yields models to all binders, which are deductively complete with respect to formal reasoning in the original systems. For lambda-calculus, we further show that the yielded models are representationally complete, a desired property that is not enjoyed by many existing lambda-calculus semantics. This work is part of a larger effort to develop a logical foundation for the programming language semantics framework K (http://kframework.org).

PDF DOC

Blogs

Read

Videos

Watch

Docs

Learn

Github

Build

Have Questions?

Learn about Pi Squared